BAYESIALAB

From Statistical Inference to Probabilistic Reasoning

Using Bayesian Networks for Reasoning with Small Samples, Missing Values, and No Data.

BAYESIALAB

Helo my name is

Stefan Conrady

The BayesiaLab Software Platform

Bayesian Networks & BayesiaLab

A Practical Introduction for Researchers

Free download:

www.bayesia.com/book

 Hardcopy available on Amazon: <u>http://amzn.com/0996533303</u>

RUSSELL GLASS · SEAN CALLAHAN

THE

with

MAKING

+ableau

www.BayesiaLab.con

Data riven

Creating a Data Cr

5 Steps To Powering Data Driven Decision Makir increasing sales with DATA - DRIVEN MARKETING

\$

Data-Driven

Marketing

DataDriven

\$

DATA-DRIVEN decisions in a

\$

Decision-Making

loginradius

\$

\$

BUSINESS DATA-DRIVEN DECISIONS

THE DATA-DRIVEN

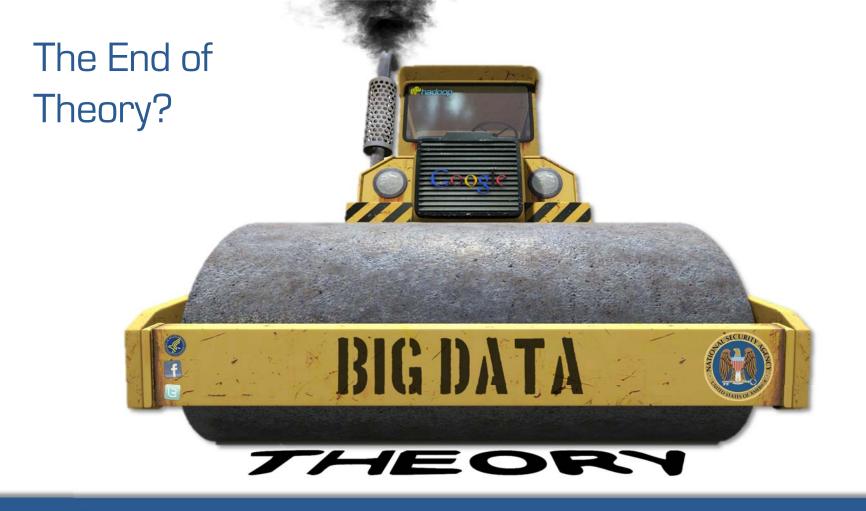
FUTURE

Data driven decisions

FORTUNE 500

Data-Driven

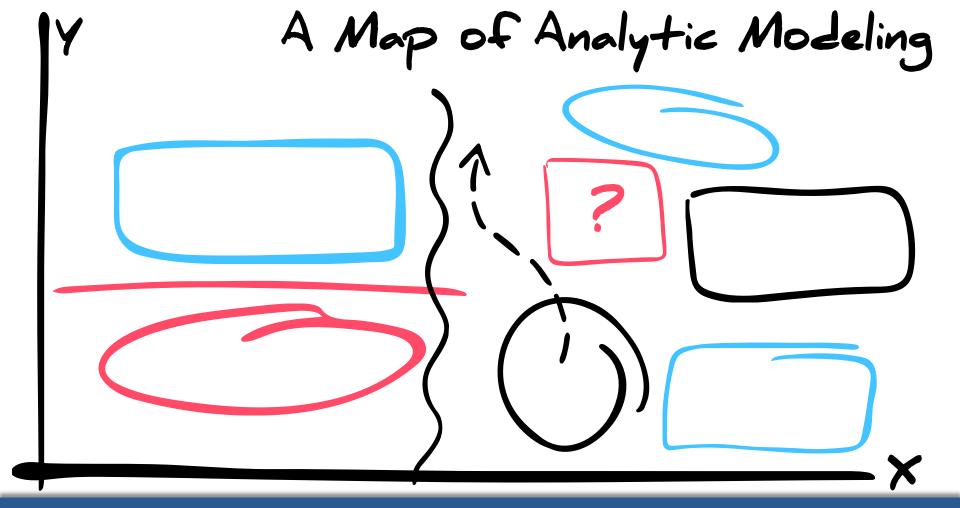
GET #DATADRIVEN



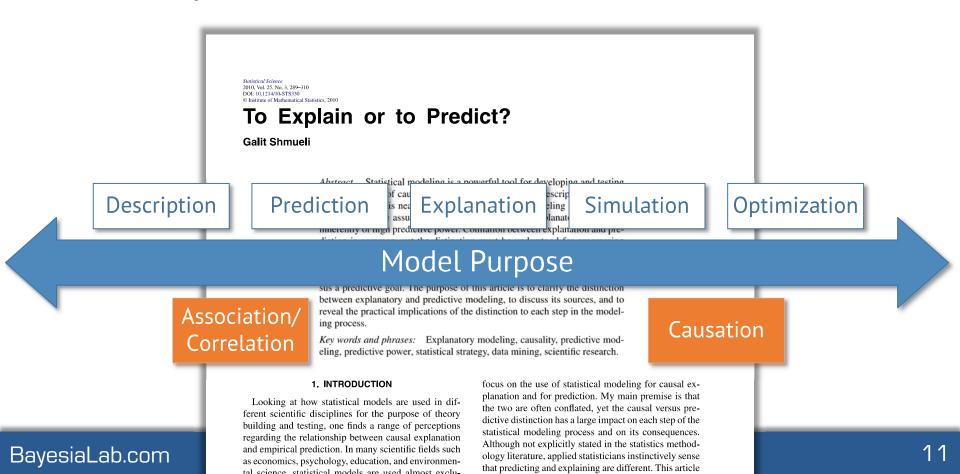
Small Data in a Big-Data World

Small-Data Challenges

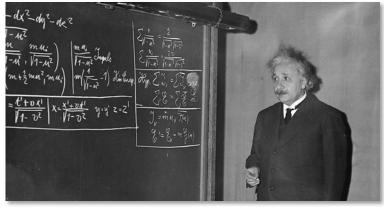
- Generating knowledge from "small data"
 - Overparameterization
 - Variable selection
- Applying knowledge to "small data"
 - Incomplete observations
 - Uncertain observations
 - Hypothetical scenarios
 - Cost of observations

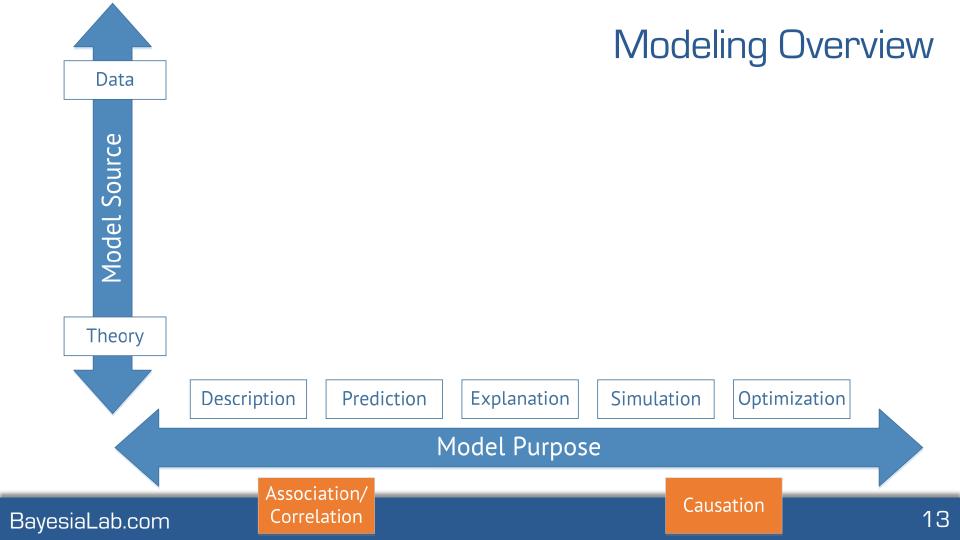


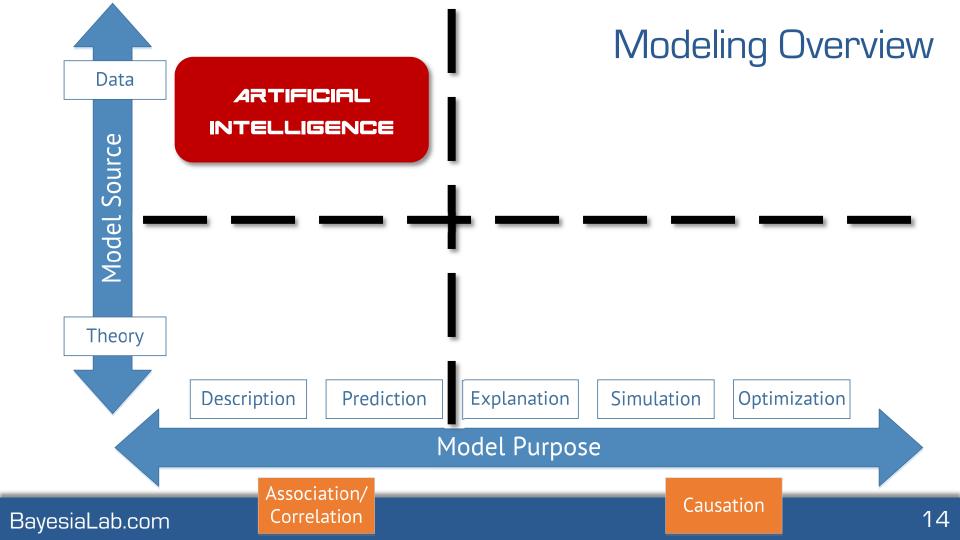
The Purpose of Models

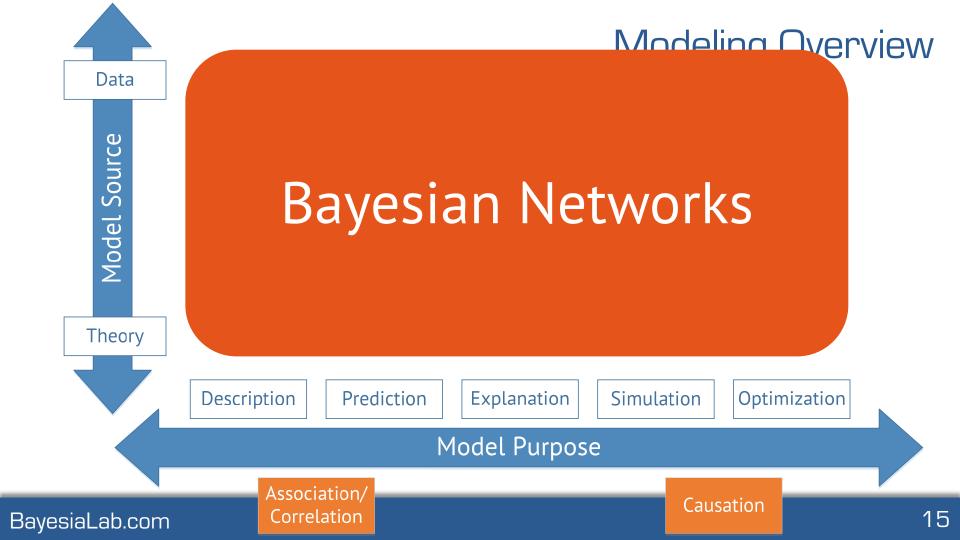


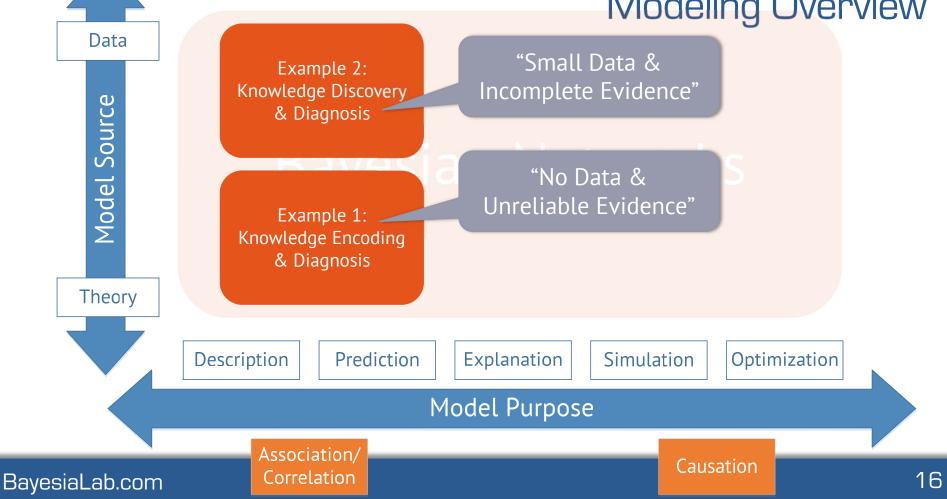
Source of Models



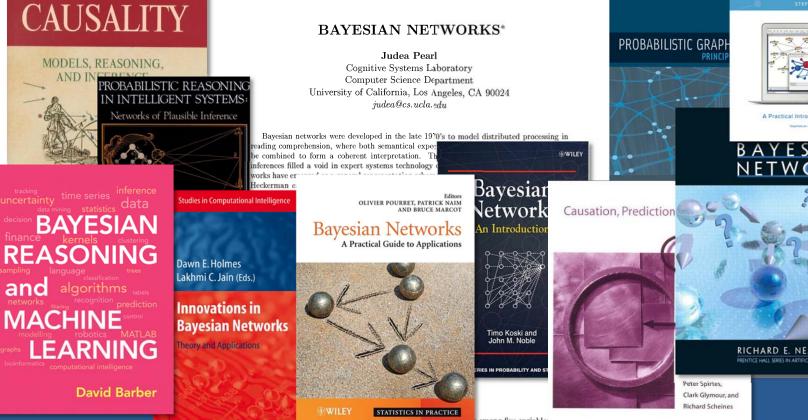






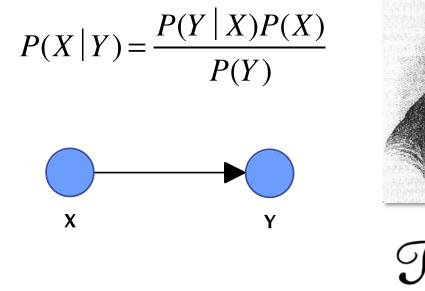


BAYESIA



Rev. Thomas Bayes

Bayes's Theorem for Conditional Probabilities



J Bayes.

ΨΗΙLOSOΨΗΙCAL Τ R A N S A C T I O N S:

[370] quodque folum, certa nitri figna præbere, fed plura concurrere debere, ut de vero nitro producto dubium non relinquatur.

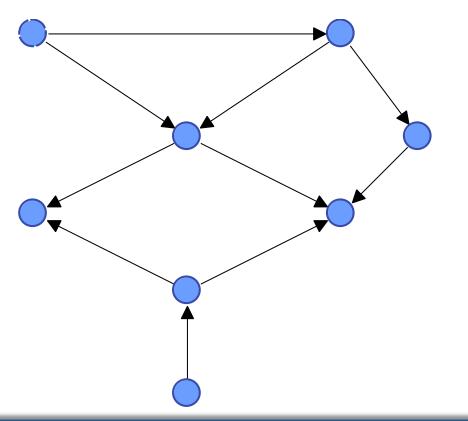
LII. An Effay towards folving a Problem in the Doctrine of Chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

Dear Sir,

Read Dec. 25. Now fend you an effay which I have 1765: found among the papers of our deceafed friend Mr. Bayes, and which, in my opinion, has great merit, and well deferves to be preferved. Experimental philosophy, you will find, is nearly interefted in the subject of it; and on this account there feems to be particular reason for thinking that a communication of it to the Royal Society cannot be improper.

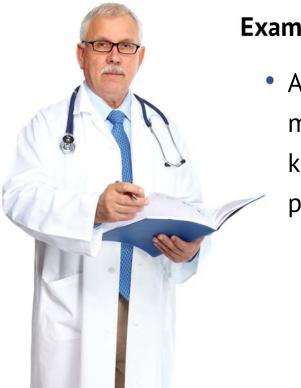
Proper. He had, you know, the honour of being a member of that illuftrious Society, and was much eftermed by many in it as a very able mathematician. In an introduction which he has writ to this Effay, he fays, that his defign at firft in thinking on the fubject of it was, to find out a method by which we might judge concerning the probability that an event has to happen, in given circumftances, upon fuppofition that we know nothing concerning it but that, under the fame circum-

- The graph *is* the model
- No formulas, no equations!



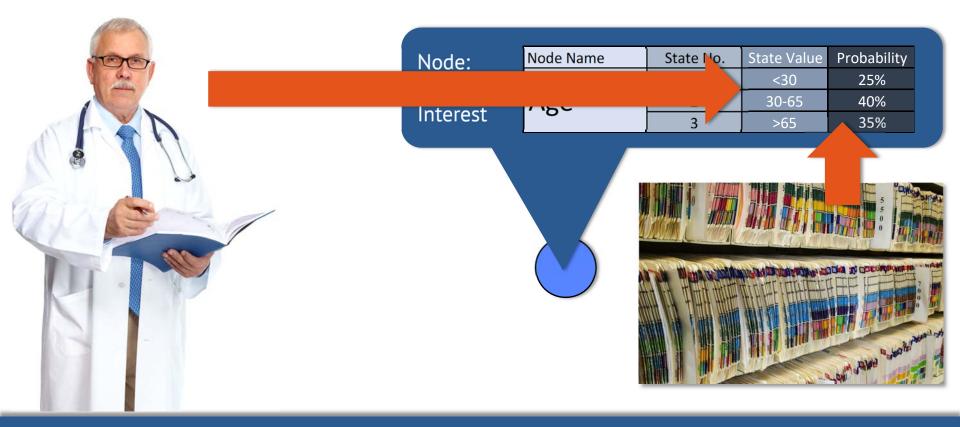
Two Components:

- Node
- Arc



Example

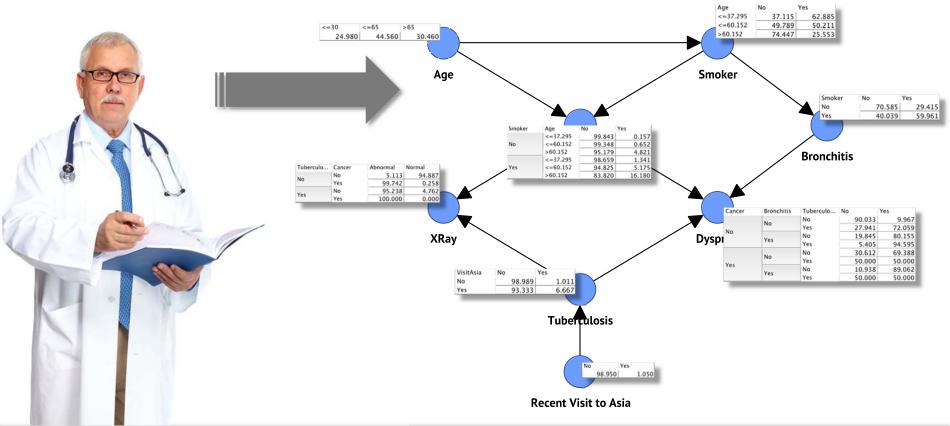
• A specialist in respiratory medicine summarizes his knowledge about his patients.



Node:	Node Name	State No.	State Value	Probability
Variable of	Smakar	1	TRUE	53.75%
Interest Smoker	2	FALSE	46.25%	
interest				

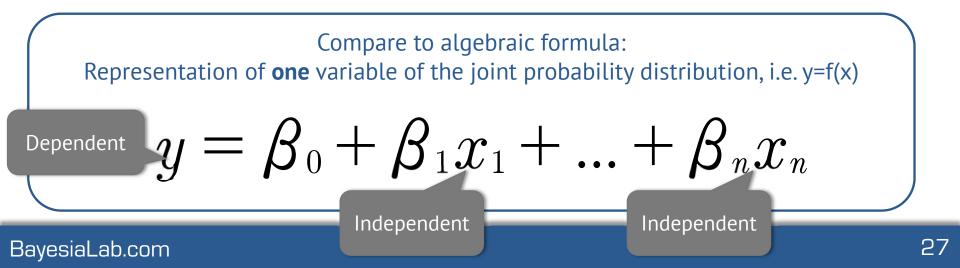
Age

Discrete & Nonparametric		Smo	oker
·	Age	FALSE	TRUE
Probabilistic Relationship	<30	31%	69%
P(Y X)	30-65	53%	47%
	>65	74%	26%
Arc			
Age			Smoker



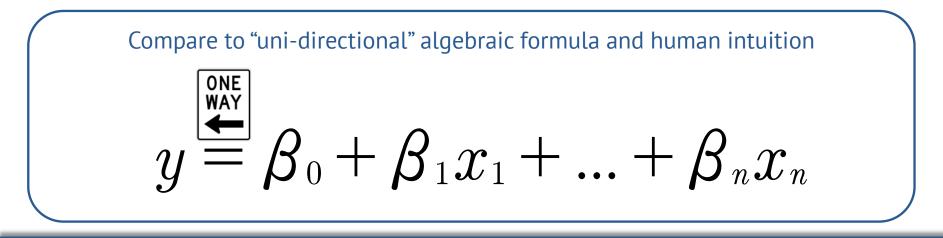
Key Properties of Bayesian Networks

- Representation (or approximation) of the joint probability distribution of all variables.
- Numerical and categorical variables are treated identically.
- No distinction between dependent and independent variables.
- Nonparametric.

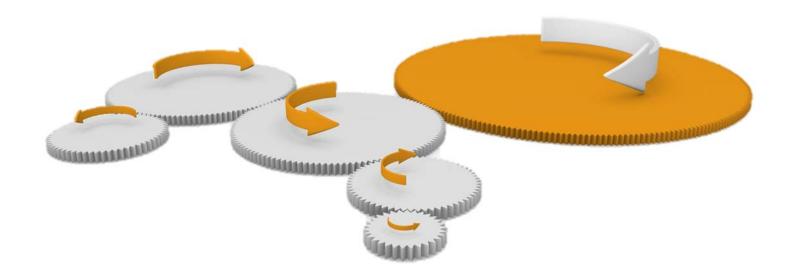


Key Properties of Bayesian Networks

Omni-directional Inference, i.e. evaluation is always performed in all directions.



Omni-Directional Inference

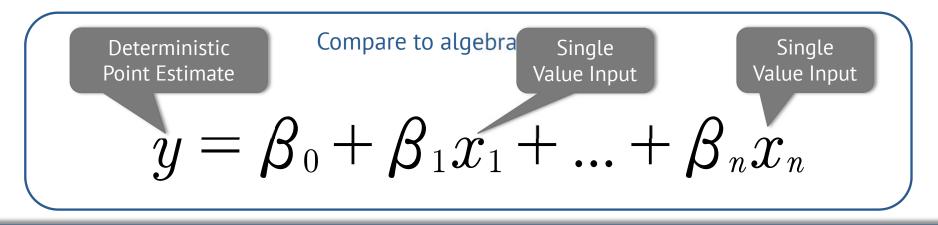


Key Properties of Bayesian Networks

- Bayesian networks are inherently probabilistic.
- Evidence and inference are represented as distributions.
- Inference can be performed with partial evidence.

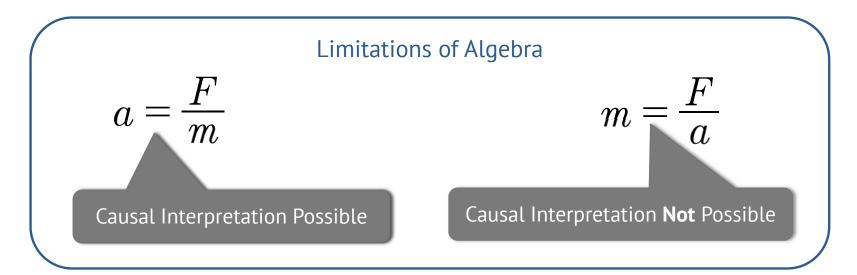
Key Properties of Bayesian Networks

- Bayesian networks are inherently probabilistic.
- Evidence and inference are represented by distributions.
- Inference can be performed with partial evidence.



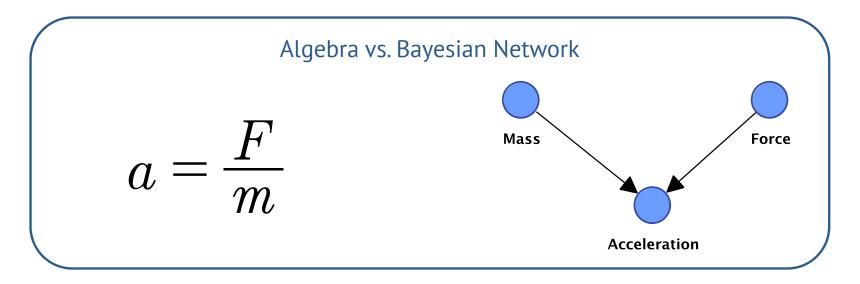
Key Properties of Bayesian Networks

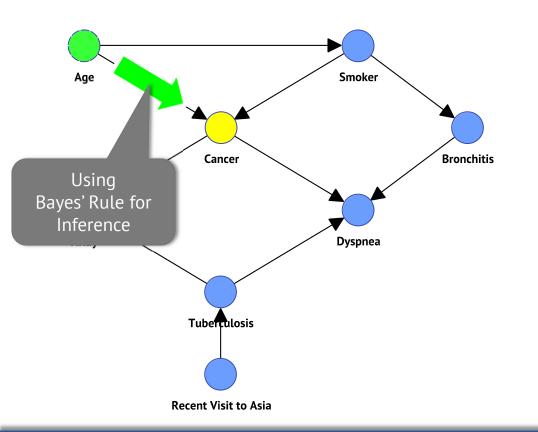
• Bayesian networks can encode causal direction, algebra cannot.



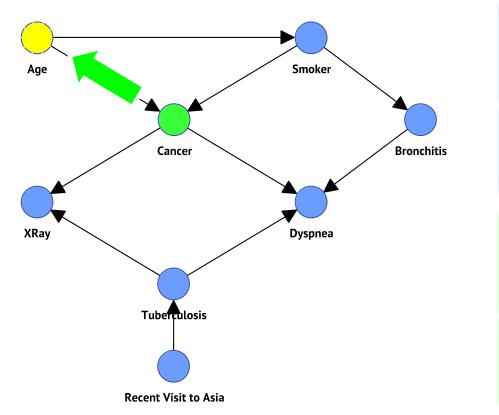
Key Properties of Bayesian Networks

• Bayesian networks can encode causal direction, algebra cannot.

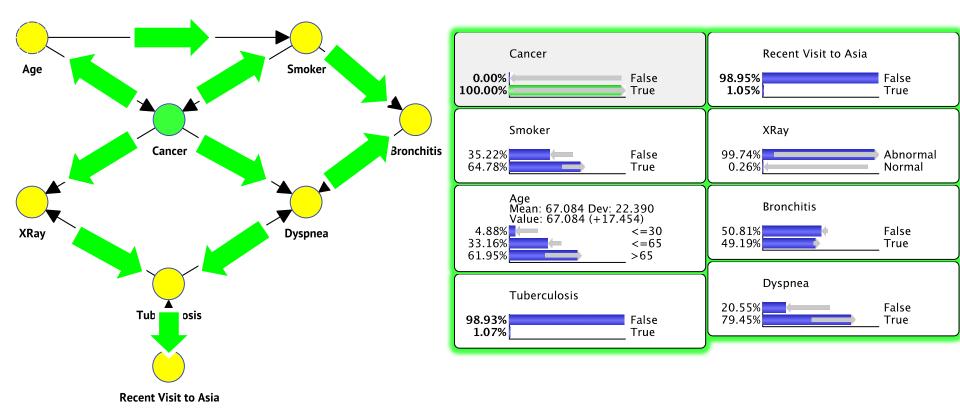


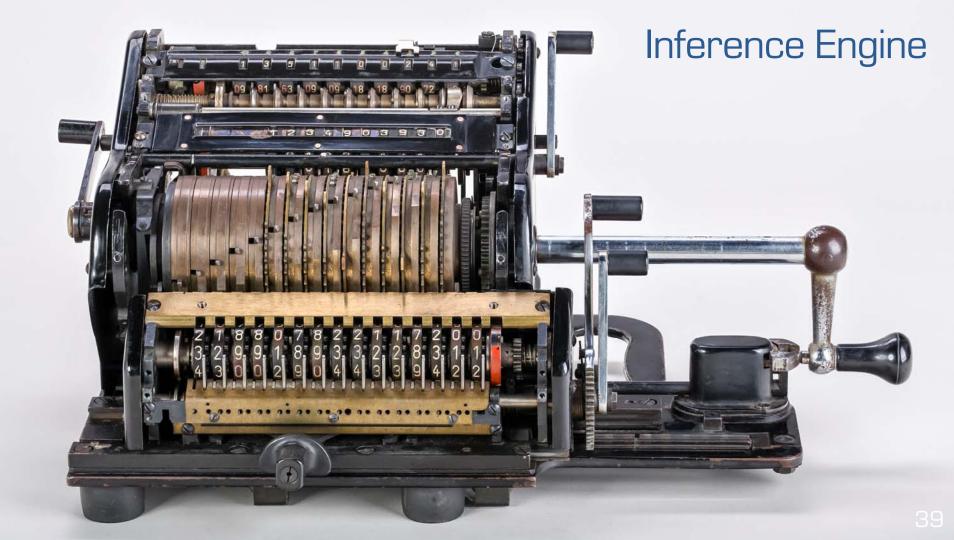


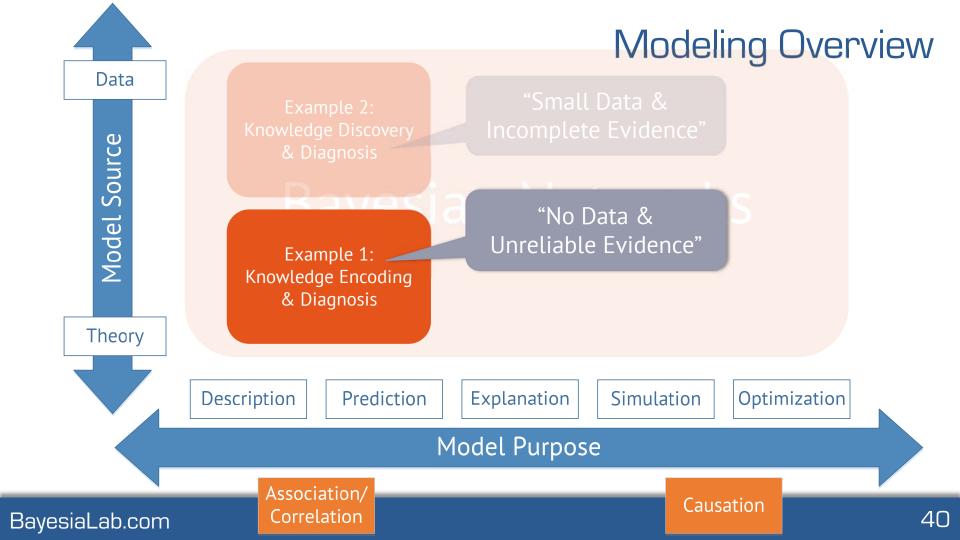
24.94% 44.58% 30.48%	5.681 <=30 <=65 >65
96.11% 3.89%	False True
0.00% 0.00% 100.00%	 859 91) <=30 <=65 >65



Age Mean: 49.630 De Value: 49.630 24.94% 44.58% 30.48%	ev: 26.681 <=30 <=65 >65
Cancer 96.11% 3.89%	False True
Age Mean: 67.084 De Value: 67.084 (+ 4.88% 33.16%	ev: 22.390 17.454) <=30 <=65 >65
Cancer	



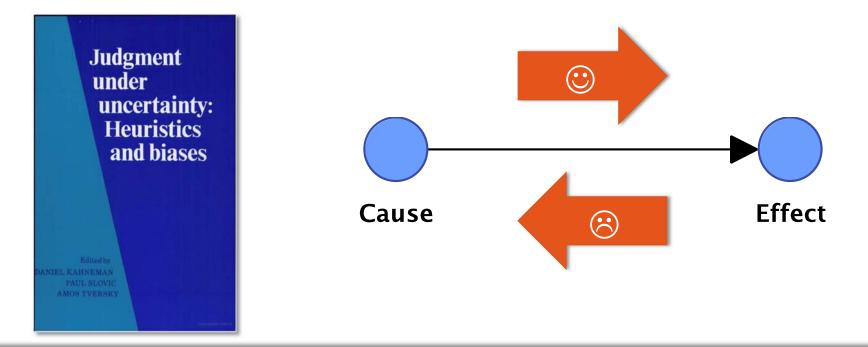




BAYESIALAB

Example 1: Probabilistic Inference Taxi Cab Example

Motivation: Human Biases in Diagnostic Reasoning



Human Reasoning Experiment (adapted from Kahneman & Tversky, 1980)

 A cab was involved in a hit-and-run accident at night.

 Two taxicab companies are operating in the city, one with yellow and one with white taxis:

85% are yellow and 15% are white

Judgment under uncertainty: Heuristics and biases

43

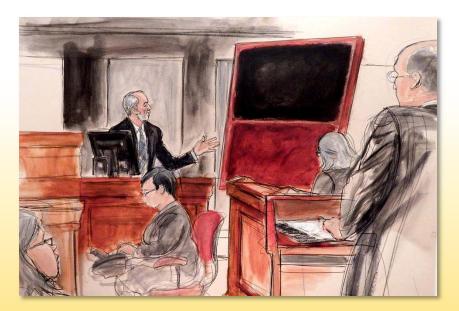
Edited by DANIEL KAHNEMAN PAUL SLOVIC AMOS TVERSKY

www.bayesia.us

A witness identified the taxi involved in the accident as white...

At the Trial

- An expert witness explains that human vision has an 80% sensitivity in terms of distinguishing between white and yellow given light conditions at the time of the accident.
- What is the probability that the taxi was actually white?



- We need to perform diagnostic probabilistic inference, i.e. from effect to cause, to answer this question.
- The Bayes Rule allows us to compute the probability:

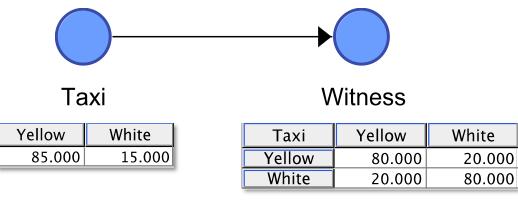
$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

$$P(Taxi = white | Witness = white) = \frac{P(Witness = white | Taxi = white)P(Taxi = white)}{P(Witness = white)} = \frac{P(Witness = white | Taxi = white)P(Taxi = white)}{P(Witness = white | Taxi = white)P(Taxi = white)}$$

P(Witness = white | Taxi = white)P(Taxi = white) + P(Witness = white | Taxi = yellow)P(Taxi = yellow)

www.bayesia.us

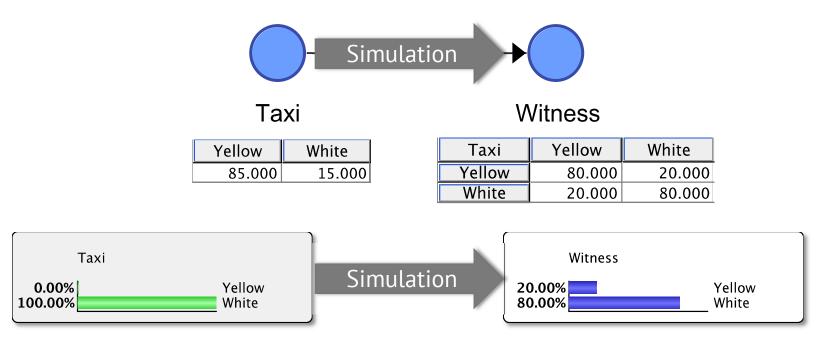
Representing our domain knowledge in the form of a simple Bayesian network



Marginal Distribution

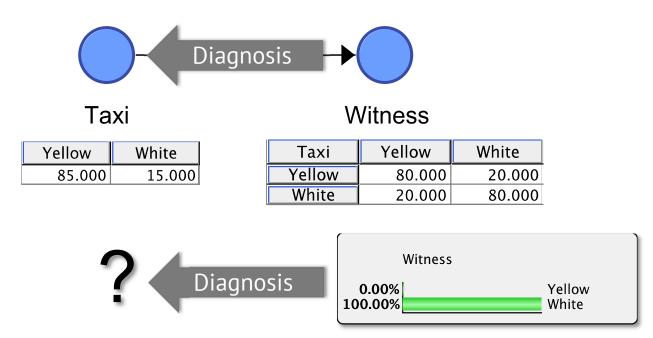
Conditional Probability Table

Carrying out inference based on observing evidence

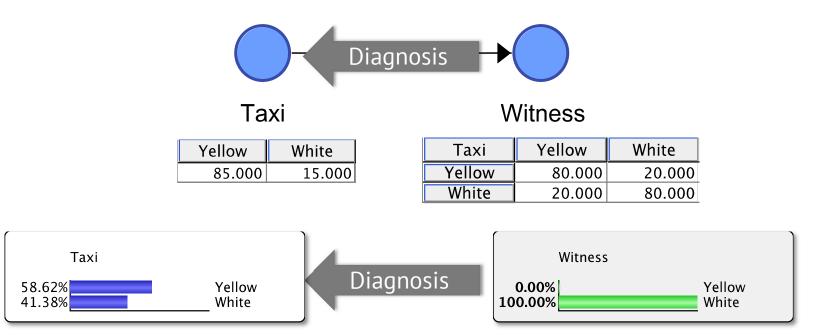


www.bayesia.us

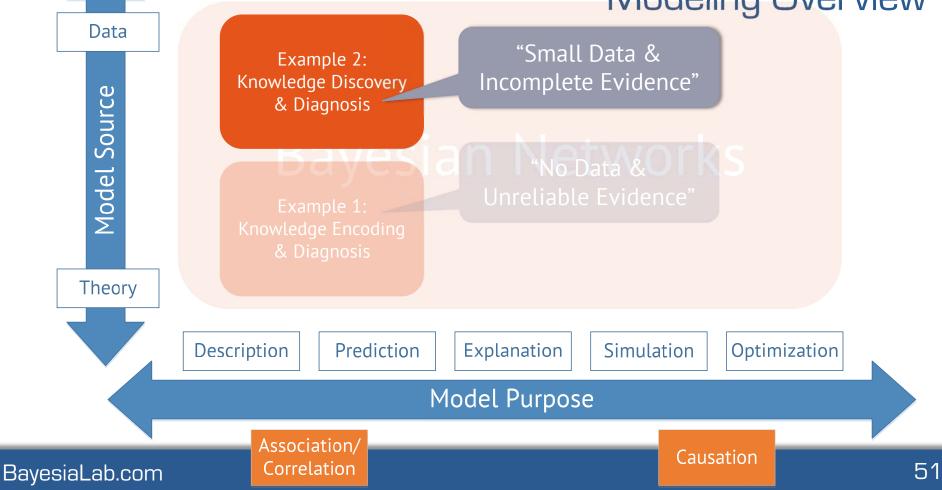
Carrying out inference based on observing evidence



Carrying out inference based on observing evidence



www.bayesia.us



BAYESIALAB

Example 2: Breast Cancer Diagnostics

Supervised Learning

See Chapter 6

Background for Original Study (Wolberg et al.)

- Challenge in Breast Cancer Diagnostics:
 - Mammography lacks sensitivity (i.e. true positive rate): 68% to 79%;
 - Surgical biopsy has high sensitivity (>98%), but invasive, time-consuming and costly;

Image Analysis of Fine Needle Aspirates

 Sensitivity of Fine Needle Aspiration with visual interpretation varies widely (65% to 98%)

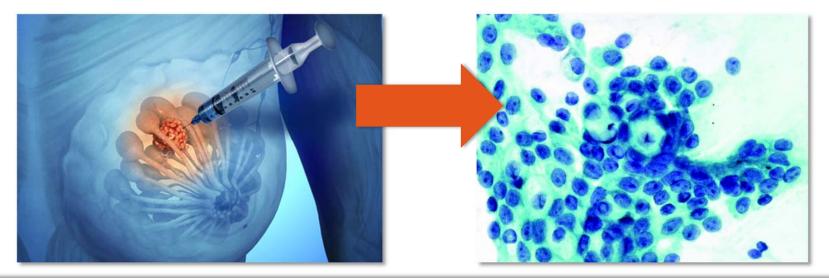


Image Analysis of Fine Needle Aspirates

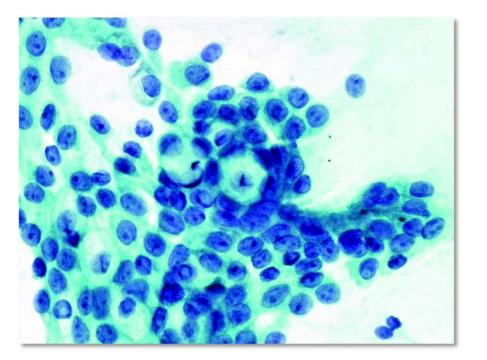
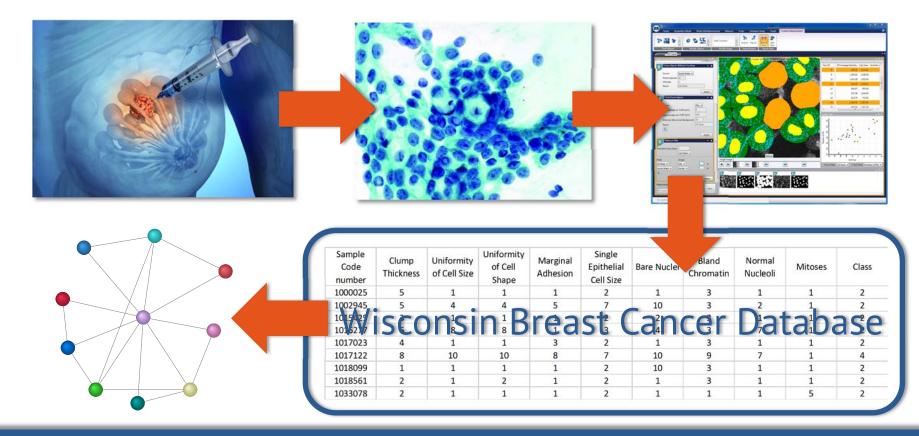
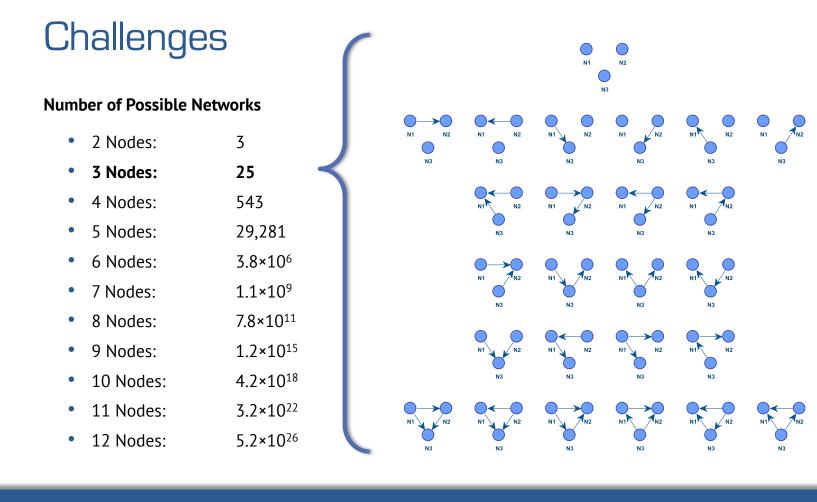


Image Attributes

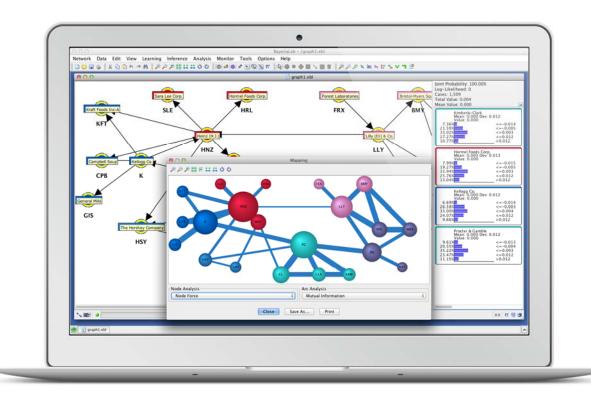
- Clump Thickness
- Uniformity of Cell Size
- Uniformity of Cell Shape
- Marginal Adhesion
- Single Epithelial Cell Size
- Bare Nuclei
- Bland Chromatin
- Normal Nucleoli
- Mitoses

Overview





The BayesiaLab Software Platform



- learning
- editing
- inference
- analysis
- simulation
- optimization
- publication

BayesiaLab WebSimulator

•••	21	ii simulator.bayesialab.com	ð Ø +
Bayesia Simulator Ames House P	Price 🗸 0		8 0 0 × 4 × 0
1 - Overall Quality	2 - Garage Space	Information	SalePrice
Mean	Mean	Joint Probability	
Dbserved	Cobserved		(\$)
3 - Kitchen Quality	4 - Size of Living Area		180796.7138
Mean	Mean		
Observed	Observed		
5 - No. of Full Baths	6 - No. of Fireplaces		
Mean —	Mean		
Observed	Observed		
7 - Lot Shape	8 - Central Air		
o Moderately Irregular	555 * No Yes		
Sightly irregular			
9 - Electrical	10 - Garage Type		

avestions?

Bayesian Networks & BayesiaLab

A Practical Introduction for Researchers

Free download:

www.bayesia.com/book

 Hardcopy available on Amazon: <u>http://amzn.com/0996533303</u>

Thank You!

stefan.conrady@bayesia.us

BayesianNetwork

linkedin.com/in/stefanconrady

facebook.com/bayesia